Вековые колебания климата и специфика периода глобального потепления (на примере м/с Елатьма)
Страница 1

Прочее » Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов » Вековые колебания климата и специфика периода глобального потепления (на примере м/с Елатьма)

Изучение данных регулярных метеонаблюдений позволило охарактеризовать с большой подробностью и достоверностью внутривековые изменения климата Земли. В частности, выделено 3 больших периода климатической динамики в Северном полушарии [8] (далее – периоды Будыко): преимущественное потепление (до середины 40-х гг. ХХ в.), относительное похолодание, сопровождавшееся ростом увлажнения в зимние месяцы (до конца 60-х гг.) и новая фаза потепления (с начала 70-х гг. по настоящее время). По мнению Будыко и его единомышленников, данные колебания температуры обусловлены изменениями коэффициента прозрачности атмосферы под влиянием вулканических извержений. При этом наиболее активное снижение прямой радиации наблюдалось в 60-е гг. ХХ в, когда крупные вулканы извергались ежегодно [8,17]. В последние десятилетия рост температуры наблюдается вопреки росту запыленности атмосферы, что данные авторы объясняют накоплением антропогенного СО2. По имеющимся оценкам [20], темпы современного потепления не имеют прецедентов в истории человечества и не сравнимы даже со знаменитой «эпохой викингов».

На основе имеющихся данных метеостанции Елатьма нами были вычислены: среднегодовые значения температуры и количества осадков, амплитуда температуры, сумма активных температур, продолжительность периода с активными температурами и количество осадков за данный период, сумма температур ниже -100C, а также некоторые другие величины. Затем полученные данные подверглись статистической обработке (расчет трендов, фрактальной размерности и др.).

Рассмотрим, как менялась среднегодовая температура на территории Рязанской области за период с 1886 по 2003 год.

Из рисунка 1.3.2 следует, что на протяжении последних 117 лет среднегодовая температура не оставалась постоянной, а менялась, причем четкой закономерности, глядя только на график, выявить нельзя. Лишь после построения полиномиального тренда можно выделить периоды относительного потепления и похолодания. В частности, с конца XIX века началось повышение температуры, которое продолжалось до середины 20-х годов и составило около 0,450C (0,120C/10 лет). Затем произошло некоторое снижение температуры, длившееся примерно до середины 60-х годов. Оно составило 0,30C (0,0960C/10 лет). С конца 60-х годов температура снова начала увеличиваться. Этот процесс продолжается до сих пор. К 2003 году коэффициент линейного тренда составил 0,320C/10 лет (1,550C за весь период).

Рис. 1.3.2. Изменение среднегодовой температуры с 1886 по 2003 год. Линейный (штрихпунктирная линия) и полиномиальный (сплошная черная линия) тренд.

Максимальная среднегодовая температура наблюдалась в 1989 году и составила 6,350C, минимальная – в 1945 году: 2,160C.

Целесообразно провести анализ динамики климатических показателей отдельно по периодам температурной динамики, существование которых доказано М.И. Будыко.

Как показано на рис. 1.3.2, на территории Рязанской области за 1886 – 1946 годы тренд температуры был положительным и составил 0,0310C/10 лет. За период 1947 – 1968 гг. тренд был отрицательным, температура снижалась на 0,0450C/10 лет. В 1969 – 2003 гг. снова наблюдался положительный тренд, составивший 0,40C/10 лет. Это говорит о том, что ситуация в Рязанской области в целом совпадает с общемировой тенденцией изменения температуры.

За период с 1886 по 2003 год наблюдалась общая тенденция к увеличению температуры. В целом она возросла на 10C по сравнению с началом XX века. По миру в среднем этот показатель составляет 0,60C. Разница объясняется неравномерностью роста температуры на материках и океанах. Среднемировой показатель учитывает изменение температуры и в Южном – более океаническом – полушарии.

Количество осадков на территории Рязанской области за период 1886 – 2003 возросло более чем на 100 мм (коэффициент линейного тренда составил 8,4 мм/10 лет). Проанализируем изменение количества осадков по тем же периодам времени, что и температуру. Однако четкой зависимости между количеством осадков и температурой нет, то есть увеличение температуры может приводить как к увеличению количества осадков, так и его уменьшению (приложение 4). Скорее всего, это связано с тем, что на осадки, кроме температуры, оказывают влияние и другие факторы, которые зачастую являются более важными, чем температура (местное испарение, температурная стратификация атмосферы, формирующаяся под влиянием местных условий и др.).

Страницы: 1 2 3 4


Поверхностные и подземные воды
Эрозия земной поверхности начинается с момента удара дождевых капель о землю. Обратите внимание на обнаженную, лишенную растительного покрова землю после дождя. Вокруг каждого камешка земля вынесена, лишь под ним, как бы под его защитой, сохраняется крошечный участок почвы. Когда дождевой воды выпа ...

Предмет, сущность и задачи математико-картографического моделирования
Моделирование – одно из наиболее распространенных в науке понятий. Первоначально словом «модель» обозначалась уменьшенная копия, или, как выразился В.И. Даль, «образец в малом виде» [1]. В последующем в широком смысле под моделью стали понимать любой образ (мысленный или условный: изображение, опис ...

Факторы и особенности размещения химической промышленности
На размещение производств и предприятий химической промышленности влияют многие факторы, обусловленные спецификой производственных процессов. Предприятия химической промышленности относят к сырье-, водо- и энергоемким производствам. По водоемкости химическая промышленность опережает все отрасли, кр ...